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ABSTRACT
Observing system assessments were made for the Earth Observing Nanosatellite-Microwave (EON-MW), a
12U CubeSat analog of the Advanced Technology Microwave Sounder (ATMS). Since the EON-MW
channels and sensor specifications closely follow those of ATMS, the sensor characteristics and geophysical
capabilities assessments indicate that the value of information for humidity (temperature) of EON-MW
observations will be similar (very similar) to that of ATMS. Eight global observing system simulation
experiments (OSSEs) were carried out to evaluate several different EON-MW constellations for data gap
mitigation and/or replacement of existing sensors. In these OSSEs, adding 2 EON-MW sensors in different
orbits, compared to adding a single EON-MW sensor, improves forecasts generally, and improves the
analysis of at least wind and humidity. In terms of the overall OSSE impacts in the scenarios considered, a
single EON-MW sensor is a close substitute for ATMS and two EON-MW sensors are a close substitute for
the Special Sensor Microwave Imager Sounder (SSMIS). The analysis and forecast impacts indicate that
EON-MW provides improved humidity profiles compared to SSMIS and ATMS.

Keywords: Cube Satellite (CubeSat), data assimilation, meteorological satellites, observing system simulation
experiment (OSSE), Earth Observing Nanosatellite-Microwave (EON-MW)

1. Introduction

The backbone of the current global observing system
(GOS1) of the Earth’s atmosphere for global-scale numer-
ical weather prediction (NWP) is the series of passive
remote sensing microwave (MW) radiometers. The
importance of MW radiance observations has been dem-
onstrated numerous times at several weather centers by
impact experiments and by regular monitoring of the sen-
sitivity of the short-term forecast error to different obser-
vation types (Cardinali, 2009). Current MW sensors are
expensive, difficult to accommodate, have long develop-
ment cycles for replacements, and a single failure can
have a large impact on global NWP. One approach to

mitigate the challenges of high cost and possible data
gaps for MW radiometers in the future is to explore alter-
natives such as SmallSats, which are lower cost, smaller
size, and quicker to build and refresh. SmallSat designers
can make use of infrastructure already developed for sat-
ellite platforms, solar panels, communication links, and
ground systems (Poghosyan and Golkar, 2017), and mul-
tiple low-cost launch opportunities for SmallSats now
exist. SmallSats in constellations provide shorter revisit
times and the possibility of on-orbit backups. In compari-
son to present satellite missions, SmallSat constellations
are expected to be regularly refreshed with state-of-the-
art technology due to reduced manufacturing times.

The Earth Observing Nanosatellite–Microwave (EON-
MW) is the planned culmination of a series of on-orbit�Corresponding author. e-mail: sid.boukabara@noaa.gov
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experiments (Blackwell et al., 2019) being conducted by
MIT/LL that have already demonstrated the capability of
CubeSats to host MW sensors for remote sensing of the
atmospheric temperature and water vapor profiles, of ver-
tically integrated cloud parameters, and of surface condi-
tions including skin temperature and MW emissivity,
which is sensitive to surface properties such as soil mois-
ture and vegetative properties. CubeSats are a class of
SmallSats sized in multiples of 10 cm cubes or Units (U),
giving rise to the 1U, 3U, etc., nomenclature used for
describing these SmallSats. The MIT/LL experiments
include the 8-channel 3U MicroMAS-1 (Osaretin et al.,
2013), the 12-channel 3U MicroMAS-2, and the 10-chan-
nel plus global positioning system radio occultation
(GPSRO) receiver 3U MiRaTA. There is now an ecosys-
tems of CubeSat components that can be combined for
novel applications. Based on the MIT/LL experiments
two missions are planned. TROPICS is a NASA mission
with a constellation of 6–12 MicroMAS-2 CubeSats in
high-obliquity low Earth orbit (LEO) (Blackwell, 2017).
The EON-MW satellite is a 12U CubeSat designed to
provide data continuity with the existing NOAA oper-
ational AMSU and ATMS MW sounding systems and to
provide a backup for the ATMS sensors on SNPP and
JPSS (Blackwell and Pereira, 2016; Blackwell et al.,
2017, 2019).

The present study—a risk reduction activity sponsored by
NOAA OPPA—has the following high-level objectives:
� Assess the potential of the EON-MW sensor to

address NOAA mission requirements and to mature
NOAA systems to exploit this type of data;

� Provide inputs to Next-Gen Space Architecture deci-
sion making, e.g. by assessing new SmallSats capabil-
ities and their impacts; and

� Assess the relative performance of different constella-
tions of orbits of EON-MW satellites.

These objectives lead to specific questions at various levels
of assessment. First, we assess the sensor characteristics and
geophysical capabilities of the EON-MW sensor specifica-
tions. Here, observation centric approaches are used to quan-
tify the inherent value of the EON-MW sensors, for example
by assessing the accuracy of the EON-MW retrievals. By
design the EON-MW channel set closely matches that of
ATMS. We quantify the impact of remaining sensor differ-
ences on the geophysical capability of EON-MW. Second,
we conduct observing system simulation experiments
(OSSEs) using the Community Global OSSE Package
(CGOP) to assess the impact of EON-MW on analyses and
forecasts of the NOAA Global Data Assimilation System
(GDAS) and Global Forecast System (GFS). In an OSSE,
observations are synthesized from a nature run (NR). The
NR is a long forecast generated by a sophisticated NWP
model which statistically simulates the real atmosphere

(Hoffman and Atlas, 2016) and which is considered to be
the ‘truth’. In the current study, the NR is the NASA
Goddard Earth Observing System Model, version 5 (GEOS-
5) nature run (G5NR) (Putman et al., 2015). The simulated
observations are then used by the NOAA data assimilation
(DA) system to quantitatively estimate NR states, and a ser-
ies of forecasts are verified against the NR. For the current
experiments the CGOP has been updated from the 3D-
ensemble variational (3DEnVar) to the 4D-ensemble vari-
ational (4DEnVar) version of the Gridpoint Statistical
Interpolation (GSI), which calculates the analysis increments
and is the central component of the DA system. The OSSEs
conducted and their associated specific questions are listed in
Table 1. For example, experiments AM and SSMIS provide
a direct comparison of EON-MW and SSMIS to address
the question of whether EON-MW can replace or mitigate
the loss of the DMSP satellite for the purpose of global
NWP. Table 2 details the differences between the experi-
ments, which involve only changes in the MW and IR sen-
sors in LEO that are used in each experiment. The particular
sensors and platforms are detailed in Section 2, but note that
the lower part of Table 2 shows counts of the different sen-
sor types and orbits compared to the Control experiment.
For example, compared to Control, experiment AM adds
one MW sensor in an Early orbit, and experiment 2Tropics
adds two MW sensors in tropical orbits.

Designing and conducting OSSEs can be difficult. On
the one hand we want everything to be as realistic as pos-
sible, on the other hand our limited knowledge about the
real world results in approximations and our limited com-
putational resources result in small samples unless simpli-
fications are made. Further, small samples in the context
of current operational global NWP systems often result
in impacts that are not statistically significant.
Differences from operational practice and approximations
to reality must be examined to insure that the experiment
results are valid for the purposes of the experiment
(Hoffman and Atlas, 2016). The goals of the current
experiments are to examine the relative impact of differ-
ent configurations of MW sensors. As described below,
our experimental setup differs from the current oper-
ational setup in some important respects and a number
of approximations were made, particularly in the simula-
tion of the MW sensor observation errors. Consequently,
results reported here are not expected to directly apply to
current operational global NWP. However, our experi-
mental setup is useful to answer in a preliminary way the
questions raised about the relative impact of different
configurations of MW sensors.

Some caveats to this study are the following:
� This study does not include assessments of the impact

of EON-MW on NOAA mission products and services
and on consumers of weather information.
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� In this study we discuss the quantity, quality, and
scales of the information contained in the observa-
tions, which we will hereafter refer to collectively as
information value. However, we do not make use of
the concepts of information content and degrees of
freedom for signal that are derived from the informa-
tion theory approach to Bayesian estimation in terms
of the prior and posterior covariance matrices of the
retrieval or data assimilation (Eyre, 1990; Rodgers,
1998; Fisher, 2003).

� The different assessment approaches provide differ-
ent information and different methods are appropri-
ate for different questions. It is important to not
apply the results of an assessment beyond its domain
of validity or to situations that invalidate some of its
assumptions.

� An important reason to consider impacts at the dif-
ferent levels of assessment is that not all improve-
ments in sensor capabilities translate immediately
into improvements in analyses and forecasts and not
all improvements in analyses and forecasts translate
into noticeable improvements in customer experience
(i.e. societal and economic impact on end-users).

� Currently, it may be very difficult to quantitatively
trace the impact of a proposed new satellite system

to societal benefits. Such investments are still made
because we expect that as sensors, systems, tools,
and products evolve in tandem, improvements will
eventually feed upwards through the value chain.

We will return to some of these caveats in the conclu-
sions. In addition, the realism of OSSEs results depend
on the realism of the simulated observations errors. The
importance of proper error addition was discussed by
Priv�e et al. (2014). For comparing existing and proposed
MW sensors we simulated observation errors with
reported noise equivalent temperature difference (NEDT)
values. Other approaches are possible but are not directly
comparable. For example, we could apply the Errico
approach to evaluate appropriate sensor noise values for
existing instruments, but then would have to somehow
extend these the proposed instruments. Even our choice
of NEDT has some ambiguity as the specifications were
often outperformed in reality.

The organization of this paper is as follows: The EON-
MW channel characteristics are presented and compared
to those of ATMS in Section 2. Section 3 defines the
orbital constellations that will be considered here for
EON-MW. A prerequisite for both the geophysical cap-
ability assessment and the OSSE (model) assessment is
the simulation of the EON-MW observations. The use of

Table 1. The OSSE short names, full names and motivating questions.

Short name Experiment Motivation

Control Control Baseline with MetOp-A, MetOp-B, and SNPP.
SSMIS Control1SSMIS (F18) This experiment serves as a comparison experiment for AM

and 2AM.
AM Control1EON-MW (F18) Can an EON-MW satellite in a DMSP-like early morning polar

orbit replace or mitigate the loss of the DMSP satellites?
2AM Control1EON-MW (F18, F18’) Can an EON-MW constellation of 2 satellite in high-inclination

DMSP-like early morning polar orbits replace or mitigate the
loss of the DMSP satellites, and perhaps further improve
forecast skill?

2Tropics Control1EON-MW (TRMM, TRMM’) Can an EON-MW constellation of 2 satellite in low-inclination
TRMM-like Tropical orbits provide additional analysis
benefits compared to other constellations, and perhaps further
improve forecast skill?

1Polar 1Polar What is the impact of losing the SNPP afternoon polar orbit
(both CrIS and ATMS) from the Control experiment?

ATMS 1Polar1ATMS (SNPP) This experiment serves as a comparison experiment for PM to
answer the question: Is the impact an EON-MW satellite in an
SNPP-like afternoon polar orbit, similar to the impact of
ATMS alone (i.e. similar to SNPP without CrIS)?

PM 1Polar1EON-MW (SNPP) Can an EON-MW satellite in an SNPP-like afternoon polar
orbit replace or mitigate the loss of the SNPP satellite (i.e.
including both CrIS and ATMS sensors)?

The OSSEs are described in detail the text and Table 2. Note that except for Control and 1Polar the full names include the added
polar orbit names in parentheses. The polar platforms for Control are MetOp-A, MetOp-B, and SNPP and for 1Polar these are
MetOp-A and MetOp-B.
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the Community Radiative Transfer Model (CRTM) for
this purpose is briefly outlined in Section 4. The inherent
information value of the EON-MW observations is
assessed in Section 5. The OSSE experiments and results
are presented in Section 6. Finally, Section 7 contains a
discussion and concluding remarks.

2. Sensor characteristics assessment

EON-MW is a NOAA/NESDIS mission built by MIT/
LL to extend the JPSS mission and/or to mitigate a gap
due to the loss of existing polar orbiting assets. The
EON-MW channel set is very similar to ATMS. EON-
MW is a cross-track scanning 12U CubeSat with a design
specification that includes 20 kg mass (16 kg for the
spacecraft bus and 4 kg for the sensor), 22� 22� 34 cm
volume, 50W average power consumption, 2-year life-
time, radiation tolerance, wide observation swath, S-band
uplink, and X-band downlink. For comparison, the
ATMS sensor alone has a mass of 75 kg and 130W aver-
age power consumption.

As a potential replacement for ATMS, the EON-MW
channels are by design very similar to those on ATMS
(Kim et al., 2014). Table 3 compares ATMS and EON-
MW channels. Based on their sensitivity the channels are

classified as surface channels (channels 1 and 2), tempera-
ture sounding channels (3–15) and water vapor sounding
channels (16–22). Except for statrospheric temperature
channels, all channels have at least some sensitivity to
cloud hydrometeors (and a lot in the case of channel 16
near 90GHz). Integrated water vapor can be very accur-
ately retrieved from channel 1 (at the 23GHz water vapor
resonance). Seven of the EON-MW channels in the
50GHz oxygen band and two in the 183GHz water
vapor band were flight tested on MiRaTA in 2017
(Blackwell et al., 2017). In addition three of the 183GHz
water vapor channels were flight tested on MicroMAS-2
in 2017.

Differences between ATMS and EON-MW are high-
lighted in bold in Table 3. Table 3 values were used to
generate the CRTM coefficients for ATMS and EON-
MW used in our experiments (and used operationally for
ATMS). A notable change for channel central frequency
is in the 183GHz water vapor channels (17–22). The
ATMS 183GHz channels are all double side band, while
the EON-MW channels are all single side band, keeping
the higher frequency side band in each case. (Note for
dual or quadruple sideband channels the bandwidth given
in Table 3 is for a single sideband.) That is, while the
ATMS channels are ± 7, 4.5, 3, 1.8, and 1GHz about the

Table 2. LEO observing system configurations for the OSSEs.

Sensor Control SSMIS AM 2AM 2Tropics 1Polar ATMS PM

AMSU MetOp ¼ ¼ ¼ ¼ ¼ ¼ ¼
ATMS SNPP ¼ ¼ ¼ ¼ X ¼ X
CrIS SNPP ¼ ¼ ¼ ¼ X X X
EON-MW X X F18 F18, F18’ TRMM, TRMM’ X X SNPP
HIRS MetOp-A ¼ ¼ ¼ ¼ ¼ ¼ ¼
IASI MetOp ¼ ¼ ¼ ¼ ¼ ¼ ¼
MHS MetOp ¼ ¼ ¼ ¼ ¼ ¼ ¼
SSMIS X F18 X X X X X X
IR 4 ¼ ¼ ¼ ¼ �1 �1 �1
MW 5 þ1 þ1 þ2 þ2 �1 ¼ 0
Early 0 þ1 þ1 þ2 ¼ ¼ ¼ ¼
Morning 7 ¼ ¼ ¼ ¼ ¼ ¼ ¼
Afternoon 2 ¼ ¼ ¼ ¼ �2 �1 �1
Tropical 0 ¼ ¼ ¼ þ2 ¼ ¼ ¼
Orbits 2 3 3 4 4 1 2 2

All other observations are the same across all OSSEs and are described in the text. The motivations for the different OSSEs are given
in Table 1. The first several rows of this table give the platform name or names for each sensor (rows) that are used in each of the
experiments (columns). MetOp indicates both MetOp-A and MetOp-B platforms, an equal sign indicates the same as Control and an
‘X’ indicates the sensor is not used in that OSSE. There are two shifted simulated platforms: F18’, which is F18 shifted by 30�

eastward and TRMM’, which is TRMM shifted by 180� eastward. All the platforms are in polar orbits except that TRMM and
TRMM’ are in tropical orbits. The following rows compare the experiments in terms of the number of sensors that are operating in
the IR or MW bands and in early morning, late morning, afternoon, and tropical orbits. In these rows the values for Control are given
and then the change relative to Control for the other experiments. An equal sign indicates no change from Control, while the zero for
AM MW indicates one sensor was added (EON-MW) and one sensor was removed (ATMS). The last row gives the number of distinct
orbits in use in each OSSE. For this purpose, MetOp-B and MetOp-A are considered to be in the same orbit since they follow each
other in approximately the same orbital plane.
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183.31GHz water vapor resonance, the EON-MW chan-
nels are 8, 6, 4, 2, and 0GHz above the resonance. For
channel 10 the ATMS bandwidth is approximately twice
that of EON-MW, while the opposite is true for channel
6. In practice, these changes in bandwidth, including the
single vs. double sideband choice for the 183GHz chan-
nels, will effect the instrument NEDT levels achieved.
Another notable change is that all the EON-MW channel
radiances are the average of purely horizontally and verti-
cally polarized signals, while the ATMS channels are
either quasi-horizontally or quasi-vertically polarized.
Quasi-horizontal means polarization is in the along-track
plane, and quasi-vertical means that it is normal to the
along-track plane (Kim et al., 2014).

The effect of all these changes taken together are sig-
nificant as seen in Fig. 1, amounting to a few degrees in
brightness temperature (BT) for the surface sensing chan-
nels and for the humidity sensing channels. There are vir-
tually no differences for the higher peaking temperature
channels 5–15. The statistics displayed in Fig. 1 are based
on a small but representative set of calculations. There
are differences in polarization for all channels, but since
the clear atmosphere is not polarized, BT changes as a
result of this difference only occur due to the interaction
of radiation with the surface as seen in channels 1–4. The
differences for the humidity sensing channels are a result
of the differences in the central frequencies and band
passes. These differences affect the water vapor channel
weighting functions in a way that potentially increases
the quantity of information contained of the EON-MW
water vapor channels relative to the ATMS water
vapor channels.

Panels a and b of Fig. 2 show the weighting function
comparison of the proposed EON-MW (solid lines) to
ATMS (dotted lines) for a standard atmosphere. For
channels where the weighting functions agree (e.g. chan-
nels 1–5), the two lines overlap and only the solid lines
are visible. The weighting functions half-widths and num-
ber of channels determine the vertical resolution of the
instrument. Since neighboring weighting functions overlap
the retrievals (and their errors) are correlated. The wider
the weighting functions and the greater the overlap, the
lower the number of independent pieces of information
(sometimes called degrees of freedom) that can be
retrieved from the observations. Here, EON-MW and
ATMS have very similar weighting functions and hence
very similar effective vertical resolution. Also, both
instruments are better able to resolve vertical profiles of
temperature relative to those of water vapor. Except for
channels 6 and 10 for which the bandwidths are different
(Table 3), all the temperature channels weighting func-
tions are the same or nearly the same since they differ
only in their spectral response function. However, for

water vapor channels 18–22, the weighting functions
while roughly the same shape are displaced vertically with
the net effect that EON-MW is sensitive to more of the
vertical column than ATMS. In Fig. 2b, EON-MW chan-
nel 22 peaks higher and channel 18 peaks lower in the
atmosphere than any of the ATMS channels. These same
relationships hold for both tropical and polar atmos-
pheres (not shown). As a result the EON-MW channels
contain more information about water vapor than the
ATMS channels, provided the instrument noise levels are
comparable. While these differences may appear small in
Fig. 2, there are noticeable positive humidity impacts
seen in the OSSEs reported below (Section 6) due to
EON-MW.

In terms of errors, EON-MW has higher specified
noise (NEDT) values than ATMS (Table 4) for the most
of the lower frequency channels (1–16, except for 10, 13
and 15, which are equal). For the higher frequency chan-
nels (17–22) the specified requirements match, in spite of
the bandwidth differences noted above. It should be
noted that the NEDT levels achieved by ATMS both in
pre-launch tests (Table 4) and as estimated on orbit are
substantially better than the specifications and for many
channels the values estimated by (Kim et al., 2014, Fig.
6) and in an on-going basis by the STAR Integrated
Calibration/Validation System are roughly only half the
specified value. (See the tab ‘RDR Channel NEDT’ at
https://www.star.nesdis.noaa.gov/icvs/status_NPP_ATMS.
php.) It is unclear whether EON-MW will outperform its
specifications in a similar manner.

In reality, the true performance of EON-MW will
depend on pointing accuracy and calibration as well as
the NEDT levels achieved. Solutions for these issues for
SmallSats are emerging and will be implemented for
EON-MW. Regarding pointing accuracy, capabilities
have greatly improved recently, with sub-arcsecond (1-
sigma) pointing control achieved on-orbit in a 3U
CubeSat (Pong, 2018). Regarding calibration accuracy
and stability, noise diodes have been used for the warm
calibration reference point (and deep space for the cold
calibration reference point) (e.g. Iturbide-Sanchez et al.,
2007; Draper et al., 2015). In the EON-MW design, noise
diodes will be sampled for calibration every two seconds.
Crews et al. (2020) report that for TROPICS, prelaunch
noise diode testing has been successfully extended to
205GHz. Various ‘vicarious’ methods will be employed
post launch to evaluate pointing and calibration accuracy
and stability, for example, by monitoring the position of
coastlines as evident in surface sensitive channels, and by
comparing observed BTs to BTs simulated from collo-
cated profiles of temperature and water vapor from
radiosondes, GPSRO retrievals, and NWP analyses (e.g.
Crews et al., 2018). The reader should note the distinction

VALUE AND IMPACT OF CONSTELLATIONS OF EON-MW 5
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usually made between the sensor noise values and the BT
observation errors usually used to simulate and assimilate
these data. As discussed in Sections 4 and 6, the observa-
tion errors should include sensor errors, forward problem
errors and representativeness errors, however, in the cur-
rent set of experiments only sensor errors are included for
radiance observations.

3. Proposed on-orbit investment: the EON-MW
sensor and CubeSat constellations

A number of scenarios for EON-MW orbital constella-
tions are considered in this study. This is not an exhaust-
ive list and other scenarios might be the subjects of
further studies. The orbits of polar orbiting satellites are
conveniently referenced by their equatorial crossing time
closest to local noon. Equatorial crossing time can
change, e.g. for DMSP F18, and in this study these times
are correct for late summer of 2014: the SNPP
‘afternoon’ orbit has a 13:30 crossing time, while the
MetOp-A ‘mid-morning’ orbit has a 9:29 crossing time,
and the DMSP F18 ‘early-morning’ orbit has an 8:06

crossing time. MetOp-B and MetOp-A are approximately
opposite each other in the same orbital plane (separated
by 49minutes in a 101-minute orbit and with equatorial
crossing times only 2minutes apart).

In this study it is assumed that EON-MW observations
have the same temporal and spatial distributions as existing
instruments. At higher polar orbits (e.g. 833km for ATMS)
the swath width is larger (2300km for ATMS), the ground
instantaneous field of view (GIFOV) are larger, and the
ground track is slower than at lower orbits (e.g. 402km
height and 878km swath width for TRMM). The following
potential polar orbits are considered for EON-MW: SNPP,
F18, and shifted F18 (F18’), which is offset to be 2h earlier
in local time and 30� eastward in longitude. The expected
EON-MW data coverage during a 6h assimilation window
is shown for these three orbits in Fig. 3. In addition, Fig. 3c
shows the expected EON-MW data coverage for the
TRMM orbit. One further potential EON-MW orbit is the
shifted TRMM (TRMM’) orbit, which is offset 180� east-
ward in longitude.

In reality the EON-MW orbit is still to be determined.
For MW radiometers like EON-MW and ATMS, the

Table 3. EON-MW sensor characteristics compared to those of ATMS for each channel (i).

Frequency (GHz) Bandwidth (GHz) Polarization

i ATMS EON-MW ATMS EON-MW ATMS EON-MW

1 23.8 23.8 0.27 0.27 QV (H1V)/2
2 31.4 31.4 0.18 0.18 QV (H1V)/2
3 50.3 50.3 0.18 0.18 QH (H1V)/2
4 51.76 51.76 0.4 0.4 QH (H1V)/2
5 52.8 52.8 0.4 0.4 QH (H1V)/2
6 53.596± 0.115 53.596± 0.115 0.17 0.34 QH (H1V)/2
7 54.4 54.4 0.4 0.4 QH (H1V)/2
8 54.94 54.94 0.4 0.4 QH (H1V)/2
9 55.5 55.5 0.33 0.33 QH (H1V)/2
10 �10 �10 0.33 0.16 QH (H1V)/2
11 �11 �11 0.078 0.078 QH (H1V)/2
12 �12 ± 0.048 �12 ± 0.048 0.036 0.036 QH (H1V)/2
13 �12 ± 0.022 �12 ± 0.022 0.016 0.016 QH (H1V)/2
14 �12 ± 0.010 �12 ± 0.010 0.008 0.008 QH (H1V)/2
15 �12 ± 0.0045 �12 ± 0.0045 0.003 0.003 QH (H1V)/2
16 88.2 88.2 2 2 QV (H1V)/2
17 165.5 165.5 3 3 QH (H1V)/2
18 183.31± 7.0 191.31 2 2 QH (H1V)/2
19 183.31± 4.5 189.31 2 2 QH (H1V)/2
20 183.31± 3.0 187.31 1 2 QH (H1V)/2
21 183.31± 1.8 185.31 1 2 QH (H1V)/2
22 183.31± 1.0 183.31 0.5 2 QH (H1V)/2

EON-MW and ATMS are compared for central frequency (GHz), bandwidth (GHz for a single side band), and polarization. Values
for ATMS are from https://www.star.nesdis.noaa.gov/mirs/snppatms.php and values for EON-MW are from W. Blackwell (pers.
comm., October, 2017). For clarity, we define m10 ¼ 57:290344 GHz, m11 ¼ m1060:217 GHz, and m12 ¼ m1060:3222 GHz. Note that
ATMS polarizations are either quasi-vertical (QV) or quasi-horizontal (QH). Differences with respect to ATMS are highlighted
in bold.
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GIFOV is measured in tens of km depending on frequency
and, at any given frequency, is proportional to orbit height
divided by aperture size. As a result, if EON-MW, with an
11-cm aperture, is in a low enough orbit such as the TRMM
orbit, it can provide similar horizontal resolution as ATMS,
with a 20-cm aperture size, albeit with a corresponding
reduced swath width. However, in this study all BTs are
simulated from the NR, or within the DA from the short-
term forecast, interpolated to the observation locations
assuming horizontal homogeneity of the atmospheric and
surface parameters across the satellite footprint, effectively
ignoring observation spatial resolution. This is a reasonable
assumption in this study because the effective resolutions of
the global NR and forecast models are several times the
quoted resolution (i.e. grid spacing) and are thus several tens
of km (Laprise, 1992). In situations where small scales are
important, such as for hurricanes and severe storms, the
horizontal resolution of these instruments may smooth
small-scale features and somewhat reduce their usefulness.

4. Sensor simulation

For all of the geophysical capability assessment (Section
5), the OSSE (model) assessment (Section 6), and the DA
procedures, EON-MW radiances (in the form of BTs) are
simulated using the CRTM (Chen et al., 2012; Zhu et al.,
2012). CRTM is used in all cases to simulate radiances
(BTs) for other MW and IR sensors. For clear-sky cases,
the principal inputs to the CRTM are profiles of tem-
perature and water vapor mixing ratio, along with surface
properties and the observing geometry of the sensor. For
the calculation of optical depth CRTM uses ‘coefficient’
tables for each sensor. The sensor coefficients are deter-
mined by best fitting the fast optical depth model to

values calculated by the very accurate and computation-
ally expensive line-by-line model. For EON-MW, new
CRTM coefficient files were generated by the CRTM
team based on the sensor channel characteristics provided
by MIT/LL that are given in Table 3 and assuming a
box-car spectral response function. With the exception of
the radiances calculated for Fig. 1 and for Section 5, all
the radiance simulations in this study are clear sky, which
is realized by setting the cloud liquid and ice water
to zero.

In the geophysical capability assessment (Section 5)
and in the OSSEs (Section 6), the CRTM inputs are
obtained by interpolating the gridded G5NR fields lin-
early in latitude and longitude and time to the locations
and times of the satellite observations. The same proced-
ure is used in the GSI but interpolates the current esti-
mate of the analysis, which initially is the 6 h forecast. In
all cases the G5NR surface types were used to simulate
observations and the GSI surface types were used in the
DA. As a result the emissivity used by CRTM in simulat-
ing radiances and in the DA are different. In reality our
knowledge of surface emissivity is limited. Therefore, it is
realistic that the emissivity used in the analysis is different
than used to simulate the observations. Note that due to
the flexible interface of CRTM, no vertical interpolation
is necessary. To simulate EON-MW observations for the
OSSEs, the times, locations, and viewing geometries of
the observations must be defined. For the purpose of this
study, the operational observational data files used by
GSI provided templates to create simulated observation
files. Then, the observation latitude, longitude, time, scan
angle, and zenith angle from real observations were
extracted (with exceptions noted below) and used to inter-
polate the G5NR profiles and to provide the inputs for

Fig. 1. BT difference statistics for EON-MW minus ATMS for each channel for bias, RMSE, minimum and maximum (different line
types and colors), calculated for a diverse set of 58 cases that are used to test CRTM. The test cases, obtained from a GSI analysis are
for both land and ocean, and clear and cloudy conditions.
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CRTM. Since, for the OSSEs, observations were required
for the period of 08 August to 15 September 2006, real
ATMS, SSMIS, and TMI observations for the same dates
during 2014 were used to define the observation templates
needed to generate the simulated BTs, with the year sim-
ply changed from 2014 to 2006. The viewing pattern for
EON-MW in the F18 orbit were simulated by shifting the
SNPP ATMS viewing pattern in longitude to match the
F18 orbit and then assigned the times from the F18 orbit.
For the TRMM orbit, we calculated the EON-MW view-
ing geometry from the location of the TRMM satellite
and the assumed EON-MW scanning pattern. Thus the
relevant geometric parameters inherited by the simulated
EON-MW observations are the altitude (833 km for
ATMS and 402 km for TRMM) and swath widths
(2300 km for ATMS and 878 km for TRMM). For F18’
and TRMM’ all longitudes for F18 and TRMM were
shifted 30� eastward and 180� eastward, respectively.

The outputs from CRTM are so-called ‘perfect’ obser-
vations, which in fact have errors due to the interpolation
from the NR, the conversions by the forward operators,
and the representativeness errors that arise because of the
difference in scales between the NR and the DA system
model. For the OSSEs, normally distributed uncorrelated
random observation errors are explicitly added to the per-
fect BTs. In the current experiments we used NEDT val-
ues as the estimate of the standard deviation of these
explicitly added observation error. Except for EON-MW,
where the design values (Table 4) were used, the NEDT
values were obtained from the STAR Integrated

Calibration/Validation System (https://www.star.nesdis.
noaa.gov/icvs/status_NPP_ATMS.php). For ATMS, these
values are approximately equal to the pre-launch values
given in Table 4. For all other observations (i.e. all non-
radiance observations) the explicitly added observation
error standard deviations are estimated by the Errico
et al. (2013) procedure. We note here that for DA, the
‘real’ errors include instrument, forward problem, and
representativeness errors (see Hoffman et al. (2017b) for
a thorough discussion). The representativeness errors in
this context include the variability on all spatial scales
between the scales of the observations (25–50 km for typ-
ical MW BTs) and the scales resolved by the DA system
(100–200 km for typical global NWP DA systems). In any
case it is an idealization to assume that the simulated
observation errors are normal, uncorrelated, and
unbiased and have a constant variance as was done in the
present study. Such idealized errors are less challenging
to DA systems, which are designed to filter out just such
errors. Future OSSEs might model the simulated observa-
tion errors more realistically, with biases and standard
deviations that vary by location or synoptic situation.

5. Geophysical capability assessment

Sensor data typically flows through a processing chain
with three distinct data levels—engineering data, sensor
data, and geophysical data—often referred to Level 0, 1,
and 2 data or L0, L1, and L2 data. For EON-MW L1
data are BTs and associated meta-data, while L2 data

Fig. 2. Weighting functions (unitless) calculated for EON-MW (solid lines) and ATMS (dotted lines) for (a) the surface and
temperature sounding channels and (b) the water vapor sounding channels, both for a standard atmosphere. Note the different
vertical axes.

8 Y. ZHOU ET AL.

https://www.star.nesdis.noaa.gov/icvs/status_NPP_ATMS.php
https://www.star.nesdis.noaa.gov/icvs/status_NPP_ATMS.php


contain retrieved profiles of temperature and water vapor
mixing ratio, as well as surface temperature and emissiv-
ity. Note that the L1 and L2 error characteristics are crit-
ical to how the data are used. For satellite IR and MW
sensors, DA systems often assimilate radiances or BT (L1
data). However, assessments of geophysical capabilities
conducted using retrieval algorithms (i.e. L1 to L2 con-
verters) can be extremely useful and avoid some of the
limitations that are inherent in current DA systems. For
example, a new MW sensor might provide potentially
valuable hydrometeor profiles that are not used in the
current DA systems, in part, perhaps because this type of
data has not been available from previous sensors.

There are many sources of error in the retrieval process
and in practice the information value of a satellite IR
and MW sensor can be assessed by applying the CRTM
or a similar forward problem within a variational
retrieval scheme. For an existing sensor, the retrieved
geophysical profiles can be compared to in situ observa-
tions (e.g. radiosondes), operational analyses, or retrievals
from an already validated sensor. For a new (proposed)

sensor, everything can be done in simulation or by ana-
logy with an existing similar sensor. In the present study,
the variational retrieval was replaced by a machine learn-
ing tool based on deep(-layer) neural networks (DNNs)
(Boukabara et al., 2019). Although not critical in the pre-
sent case, such new tools can provide orders of magni-
tude computational speedup.

Figure 4 compares the retrieval accuracy for profiles of
temperature and water vapor mixing ratio for four MW sen-
sors—AMSU-A/MHS, SSMIS, EON-MW, and ATMS. For
this figure, the four sensors were simulated by CRTM from
the G5NR for 1 and 8 August 2006, using the locations and
times of day of the observations from the real ATMS on
SNPP for 1 and 8 August 2014 (about 250000 observations
per day). These simulations, unlike the other simulations in
this study, have no explicitly added errors, but do include
the effects of clouds by providing the G5NR cloud liquid
water and cloud ice content profiles to the CRTM. It is rea-
sonable to train the ML model using simulated observations
without errors. Including errors in the validation data set
would increase the retrieval errors, but should have little
impact on the comparison of the different sensors, which is
the object of this calculation. The 1 August cloudy simulated
data and corresponding G5NR geophysical data were used
to train one DNN for each sensor (Shahroudi et al., 2019a).
Each DNN has 3 hidden layers with 35, 40, and 35 nodes
and retrieves the temperature profile, the water vapor mixing
ratio profile, three integrated cloud parameters, and the skin
temperature. Then, the resulting machine learning model
retrievals for the independent sample of 8 August were veri-
fied against the G5NR at the 72 G5NR vertical layers. The
capabilities of the four sensors to retrieve geophysical param-
eters are similar, but there are notable differences: At levels
around 500hPa, SSMIS is better in terms of RMSE tem-
perature, but for pressure levels around 200 and 800hPa the
SSMIS RMSE water vapor mixing ratio is larger than the
other instruments, in part due to larger biases. EON-MW is
as good or better than the other sensors for the RMSE of
water vapor mixing ratio, most notably in the upper tropo-
sphere from 300 to 150hPa. The bias seen in Fig. 4 for all
the sensors is less than approximately 2K for temperature
and less than approximately 10% for mixing ratio. With a
bigger and more representative training set we should expect
near zero bias. The current situation is due to the difference
of global BT between the training day (1 August) and the
verification day (8 August).

Results presented in Fig. 4 show that EON-MW has
capabilities to derive temperature and water vapor similar
to other MW radiometers. In Fig. 5, AMSU-A/MHS,
SSMIS, EON-MW, and ATMS are compared in terms of
summary assessment metrics (SAMs, Hoffman et al.,
2017a, 2018). SAMs are averages of normalized primary
assessment metrics (PAMs), including in this example the

Table 4. ATMS and EON-MW error standard deviations.

EON-MW ATMS ATMS ATMS
Specification Specification Pre-launch Assimilation

i NEDT (K) NEDT (K) NEDT (K) EOE (K)

1 0.7 0.5 0.27 5.00
2 0.8 0.6 0.35 5.00
3 0.9 0.7 0.41 5.00
4 0.7 0.5 0.3 3.00
5 0.7 0.5 0.29 0.55
6 0.7 0.5 0.29 0.40
7 0.7 0.5 0.28 0.40
8 0.7 0.5 0.28 0.40
9 0.7 0.5 0.31 0.40
10 0.75 0.75 0.44 0.40
11 1.2 1 0.48 0.45
12 1.2 1 0.62 0.45
13 1.5 1.5 0.9 0.55
14 2.4 2.2 1.24 0.80
15 3.6 3.6 1.98 3.00
16 0.5 0.3 0.28 5.00
17 0.6 0.6 0.45 2.50
18 0.8 0.8 0.38 2.50
19 0.8 0.8 0.42 2.50
20 0.8 0.8 0.53 2.50
21 0.8 0.8 0.58 2.50
22 0.9 0.9 0.72 2.50

The columns are for the channel number (i), the specified
temperature sensitivity (NEDT, K) for EON-MW, the specified
and pre-launch measured NEDT for ATMS, and the estimated
observation errors (EOE) for ATMS used during the DA in the
OSSEs. Values for NEDT for ATMS from Kim et al. (2014) and
for EON-MW from W. Blackwell (pers. comm., October, 2017).
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RMSE, bias, and correlation. The normalization used is
the empirical cumulative density function (ECDF) deter-
mined from the sample including all treatments, in this
case AMSU-A/MHS, SSMIS, EON-MW, and ATMS.
Consequently under the null hypothesis that the different
treatments are indistinguishable each normalized assess-
ment metric (NAM) has a uniform probability on the
unit [0,1] interval with a mean of 1/2. Also, under the
null hypothesis, the SAMs are approximately Gaussian
and have mean 1/2, and variance 1/(12n), where n is the
number of NAMs averaged. Here, SAMs are calculated
separately for temperature from the surface to 10mb (48
layers) and for water vapor mixing ratio from the surface
to 100mb (35 layers). The ECDF normalized PAMs are
unitless and are approximately distributed uniformly on
the interval from 0 (worst) to 1 (best). Results for a
second type of normalization, the rescaled minmax nor-
malization is also shown in the figure (as black outines)
to give a sense of the sensitivity of the method to the nor-
malization method (Hoffman et al., 2018). The use of
SAMs increases statistical significance, but note that in Fig.
5 the individual PAMs are assumed independent. Thus,
SSMIS and ATMS are statistically significantly better than
AMSU-A/MHS and EON-MW for temperature retrievals,
and EON-MW is statistically significantly better than the
others for water vapor mixing ratio retrievals. Some of the

other differences between sensors is within the 95% confi-
dence interval error bars plotted at the ends of the SAM
color bars. For example, SSMIS is somewhat better than
ATMS for temperature retrievals but these SAM differences
based on the limited sample used are not statistically signifi-
cant. The reader should note that the additional SSMIS
capabilities to retrieve surface properties (e.g. ocean surface
wind speed, precipitation, and sea-ice concentration) and
mesospheric temperatures were not included in the above
comparisons. Further, the results presented in this section
must be considered preliminary and the precise numerical
values are not meaningful. The results are expected to vary
with the time period of the sample and the retrieval
method used

Figure 6 provides a geophysical capability assessment,
i.e. the ability to describe the environment, of EON-MW
alone, the suite of SNPP sensors (ATMS, CrIS, and
VIIRS) and the constellation of sensors on SNPP,
NOAA-18, and MetOp-B. This analysis shows the com-
plementarity of the various sensors. In Fig. 6 each panel
is a table with geophysical variables (measured by MW
or IR sensors) as columns and instrument attributes as
rows. Each cell is assigned optimal, intermediate, or low
capability based on comparing the sensor, suite or con-
stellation attributes to the maximum and minimum useful
values. The individual sensor attributes are based on

Fig. 3. Six-hour data coverage for simulated EON-MW observations including (a) the F18 early morning orbit, (b) the afternoon
SNPP orbit, (c) the high obliquity TRMM (tropical) orbit, and (d) the shifted F18 (F18’) orbit. The six-hour windows are centered on
0000 UTC 8 August 2006 (a, b, d) or 0600 UTC 8 August 2006 (c).
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DNN retrievals explained above and on the instrument
specifications. The maximum and minimum useful values
are based on the current NOAA retrieval algorithms such
as the Microwave Integrated Retrieval System (MiRS)
and the NOAA Unique Combined Atmospheric
Processing System (NUCAPS) (https://www.star.nesdis.
noaa.gov/portfolio/productCatalog.php). Sensor attributes
better than the maximum useful value are assigned the
optimal capability, attributes worse than the minimum
useful value are assigned the low capability and otherwise

(i.e. in between) the sensor attributes are assigned the
intermediate capability. When combining results for mul-
tiple sensors, the best capability of all the individual sen-
sors in each table cell is kept. For this capability
assessment, ATMS and EON-MW are equivalent because
of the overall similarity of these two sensors. While
EON-MW (or ATMS) alone leaves many gaps in desired
observation capability, the combination of sensors in the
SNPP suite or the polar orbiting constellation is very
capable, scoring optimal for most parameters and for

Fig. 4. Vertical profiles of retrieval mean errors (bias, a, c) and RMSE (b, d) for temperature (K, a, b) and water vapor mixing ratio
(%, c, d) for four MW sensors (colors) for the 8 August 2006 independent sample described in the text.
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most characteristics. The main limitations for the constel-
lation of sensors on SNPP, NOAA-18 and MetOp-B is
that vertical resolution, characterized by the weighting
function half widths and the number of channels, while
adequate for many purposes, is less than optimal.

6. NWP analysis and forecast
impact assessment

In Section 5 we considered how to assess the observation
system capabilities in terms of the L1 and L2 observa-
tions themselves. Here, in this Section 6 we shift our
focus from the observation space, i.e. from intrinsic data
impacts, to the model space, i.e. to application dependent
model impacts. Here, OSSEs are conducted to evaluate
proposed future EON-MW observations in current global
NWP applications.

6.1. Methods

Global observing system experiments (OSEs) are data
denial experiments to determine the impact of existing
observing systems on global scale NWP. First, a Control
experiment is run that parallels current practice. Then
identical Test runs are made excluding or adding a par-
ticular observing system. OSSEs determine the impact of
new observing systems by performing data denial experi-
ments similar to OSEs, but using simulated observations.
OSSEs provide a rigorous, cost-effective approach to
evaluate the potential impact of new observing systems
and alternate deployments of existing systems, and to
optimize observing strategies. Well designed OSSEs can
account for many aspects of the interaction of data and
DA system, but there are always limitations and caveats
(Hoffman and Atlas, 2016) including the quantification
of observation error characteristics based on specifica-
tions or preflight engineering studies and the fact the
today’s DA system will evolve prior to launch. Further
discussion of the limitations and caveats of this study is
included in the conclusions (Section 7). OSSEs are also
used to prepare for the assimilation of new types of data
in order to accelerate their application to operational pre-
diction, as well as to optimize the assimilation of existing
data (Hoffman and Atlas, 2016). The OSSE process is
depicted in Fig. 7. In an OSSE, the DA system (GDAS/GFS
in the figure) assimilates simulated observations prepared by
interpolating a realistic NR to observation locations given by
a template file and applying different forward models: the
CRTM for radiance observations, simple vertical interpol-
ation for conventional observations, and the GPSRO forward
model for GPSRO observations. Normally distributed uncor-
related random observation errors are explicitly added to the
simulated radiances, conventional observations, and GPSRO
profiles. Except for the NR, taken to represent the ‘true’
atmosphere, and the simulation of the observations, every-
thing in the OSSE setup is made to be as similar as possible
to the operational DA and forecast system. Of course in the
OSSE framework we can validate analyses and forecasts ver-
sus the truth. In our experiments we use the CGOP, which
has been documented and validated by Boukabara et al.
(2016, 2018b). In summary, the CGOP includes

� A NR, the G5NR, a 2-yr (May 2005–May 2007), 7-
km-resolution, non-hydrostatic GEOS-5 forecast
(Gelaro et al., 2015; Putman et al., 2015);

� Forward operators, to simulate error-free observa-
tions, including the CRTM for BTs (Chen et al.,
2012; Zhu et al., 2012) and a GPSRO observation
simulator (Cucurull et al., 2013);

� An observation error addition procedure (Errico
et al., 2013, described briefly in Section 4);

Fig. 5. SAMs for AMSU-A/MHS, SSMIS, EON-MW, and
ATMS for temperature (left) and water vapor mixing ratio (right)
for the same sample as Fig. 4. In this case, the PAMs include
RMSE, correlation, and bias of temperature and water vapor
mixing ratio profiles. The color bars are for ECDF normalization
and the black outlines are for rescaled minmax normalization
(Hoffman et al., 2018). Confidence intervals for the ECDF SAMs
are plotted at the 95% level and grey shading indicates the 95%
confidence interval for the null hypothesis (H0) that there is no
difference between sensors.
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� A DA and forecast system, here the GDAS including
the hybrid 3DEnVar or 4DEnVar GSI DA system

(Kleist and Ide, 2015a, 2015b) and the GFS (NOAA,
2015); and

Fig. 6. Geophysical capability assessment for different geophysical variables (columns) and key sensor attributes (rows) for (top)
EON-MW, (middle) all SNPP sensors (ATMS, CrIS, VIIRS), and (bottom) SNPP sensors complemented by the sensors on two
additional polar orbiters—AMSU-A/MHS and HIRS/4 on NOAA-18 and AMSU-A/MHS, IASI, and HIRS/4 on MetOp. Among the
attributes, performance refers to error size, density to the observation spacing, and reliability to impact of losing one sensor in a
constellation. The color in each cell indicates the capability assessment for that geophysical variable (column) and attribute (row).
Green, yellow, and red indicate optimal, marginal, and low capability, respectively.

VALUE AND IMPACT OF CONSTELLATIONS OF EON-MW 13



� A forecast model, the global spectral model (GSM)
(NWS, 2014).

In contrast to other recent SmallSat OSSEs (Shahroudi
et al., 2019b; Zhou et al., 2019), the current experiments
do include explicit observation errors for all observation
types. The standard deviations of these errors are given
by the estimated NEDT values for all radiance observa-
tions and by values determined from the Errico et al. pro-
cedure for all other observations. Similar to those recent
studies, the current study employed a research version of
GDAS/GFS configuration with reduced resolution of
T670 (20 km resolution) for the deterministic forecast,
and T254 (53 km resolution) for the ensemble forecasts
and data assimilation. The 64-layer sigma-pressure hybrid
coordinate and 80-member ensembles are the same as the
currently operational configuration. The OSSE system
has been extensively validated by Boukabara et al.
(2018a). This study showed that relative performance in
parallel OSEs and OSSEs are well matched even in the
case of no explicitly added observation errors when the
absolute performance in the OSSEs is superior to that in
the OSEs.

For the current experiments the CGOP GSI DA sys-
tem has been updated from 3DEnVar to 4DEnVar. The
GSI combines variational and Kalman filter methods.
The main GSI analysis is a high-resolution updated ver-
sion of the model state that is obtained by variationally
combining information from the observations and the
short-term (or background) high-resolution deterministic
forecast. This analysis uses a hybrid estimate of the back-
ground error covariance that combines a climatological
estimate and a dynamic uncertainty estimate. The
dynamic uncertainty estimate is derived from a parallel
low-resolution ensemble Kalman filter DA. At every cycle
the ensemble is re-centered around the high-resolution
variational analysis in order to synchronize the Kalman
filter DA to the variational DA.

A new routine was added to the GSI for processing
EON-MW observations that closely parallels the method-
ology used operationally for ATMS observations in terms of
observation error characterization, quality control (QC), and
data thinning. As is the case for all radiance observations,
channel-channel correlations are ignored by the DA system
for EON-MW. The estimated observation error (EOE)
standard deviation required by GSI (Table 4) are taken from
the operational system and have been tuned to reflect instru-
ment error, forward problem error and representativeness
error. As with other MW sensors, ATMS channels sensitive
to the surface and moisture have higher forward problem
and representativeness errors and hence higher estimated
observation error standard deviation than the temperature
sounding channels. Although the explicitly added errors are

larger for EON-MW than for ATMS (Section 4) the same
error standard deviations are used in GSI for EON-MW
and ATMS. This holds for the surface effected channels and
the water vapor channels because the forward problem and
representativeness errors are the same and dominate the total
observation error. For the higher peaking temperature chan-
nels the GSI closely fits ATMS and will therefore overfit
EON-MW in our experiments. Thus, in the OSSEs, as is the
case in reality, the GSI values differ from the true observa-
tional error standard deviations. The QC routines that were
implemented for EON-MW are analogous to those for
ATMS. First, following operational practice, all channels are
used except that all Channel 15 observations are eliminated
(i.e. blacklisted) because of the high noise level in that chan-
nel (see Table 4). (However, with sufficient spatial filtering,
the data from this highest peaking channel could be useful.)
Second, BTs that would be adversely affected by cloud liquid
water (CLW) present in the G5NR are eliminated. Channels
adversely affected by surface emissivity are also eliminated.
This helps to create a realistic pattern of observation used by
the analysis even though all radiances are simulated for
clear-sky conditions. However, the G5NR overestimates
cloud water amounts globally and precipitation over land
and in the Pacific Intertropical Convergence Zone (ITCZ)
(Gelaro et al., 2015). Therefore, due to this QC procedure,
we expect the GSI to use fewer MW observations in the
OSSEs than in reality. (See discussion of Fig. 8.) Third, a
background check removes any points where the departure
of the EON-MW observation from the background (O–B)
exceeds 3 times the observation error. There is no explicit
thinning in the OSSE because data is only simulated at loca-
tions in the template files that had already been selected by
the thinning procedures of the operational system. That is,
simulated observations were only created for those real
observations that were actually provided to the operational
DA system after operational preprocessing (i.e. after being
thinned and passing gross QC). The operational thinning
operates on each sensor separately and selects the best obser-
vations closest to the analysis time and that are not closer
than a set distance (typically 145km) to observations
already selected.

Observations used in the experiments described here
come from a variety of platforms including conventional
platforms (surface stations, ships, radiosondes, etc.) and
satellites in LEO or geosynchronous equatorial orbit
(GEO). As described earlier for the simulated EON-MW
observations, all observations are simulated at the times
and locations of the 2014 real observations with the year
changed to 2006, with the exception of the addition of
GOES-16 atmospheric motion vectors from 2017. Except
for IR and MW sensors in polar orbit, and the new
EON-MW sensors (in polar or TRMM-like orbits) all
OSSEs use the same observations, which include:
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� All conventional observations normally used by the
(January 2015 implementation of the) GDAS, except
for aircraft observations;

� All satellite based winds (cloud track winds, scatter-
ometer winds, etc.) normally used by the GDAS;

� All radio occultation observations normally used by
the GDAS; and

� Radiances normally used by GDAS from the GOES-15
sounder (SNDR) and Meteosat-10 SEVIRI sensors.

Table 2 lists the orbit(s) (i.e. platform(s)) for each LEO
IR and MW sensor used in each experiment. Note that
only a subset of all available radiance observations are
included in the experiments. The basic scheme outlined
for simulating EON-MW observations in Section 4 is fol-
lowed for all other observation types, except that CRTM
is replaced with either the forward operator of Cucurull
et al. (2013) for radio occultation observations and simple
vertical (logarithmic in pressure) interpolation for the
conventional and atmospheric motion vector (AMV)

observations. The following caveats are noted here: First,
the simulated AMVs are located where actual AMVs
were available in 2014. These locations are only climato-
logically correct since the 2014 actual cloud cover does
not match the NR cloud cover. Similarly, the simulated
radiosondes ascend vertically rather than following the
wind in the NR. These factors might have some impacts
on the sensitivity of the analysis to these data types.
Second, if more data from other satellites (e.g. AIRS and
AMSU on Aqua, and SSMIS on F18, all sensors on
Chinese satellites) and from aircraft were included in the
Control configuration, the OSSE impacts of adding EON-
MW observations might be less. The other satellite data
were excluded by design for to enhance the impact of the
configurations studied within computer resource con-
straints. The aircraft data were not included inadvertently
due to a 2015 change in input formats that removed air-
craft observations from the customary conventional
observation input file.

Fig. 7. Flow chart of the OSSE system. Here, blue are inputs, orange are processes, and green are calculated quantities, although
calculated quantities such as the error added simulated observations are also the input to the next process. See text for explanation.
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All experiments listed in Table 2 were initialized at
1800 UTC 7 August 2006 from day 7 of the Control
OSSE that itself was initialized at 1800 UTC 31 July
2006 from an operational analysis. Each of the OSSEs

run from 8 August through 15 September, with the DA
system cycled every 6 h at the four synoptic times—0000,
0600, 1200, and 1800 UTC. The first 7 days are consid-
ered a spin up period and all assessments are based on
the DA cycles and initial forecast times from 0000 UTC
15 August through 0000 UTC 15 September. The GFS 0
to 168 h forecasts were initialized by the 0000 UTC
GDAS analysis each day during the assessment period.

6.2. Results

Results are presented here in terms of analysis accuracy,
forecast scorecards, and SAMs. One advantage of OSSEs
is that the ‘true’ state of the atmosphere (i.e. the NR) is
perfectly known. The global analyses and forecasts from
OSSE experiments in this study are verified with respect
to the G5NR. To assess the impact on the GDAS ana-
lysis, the bias and RMSE of the analysis were calculated
for geopotential height and relative humidity (RH) for
different levels. To assess the impact on the GFS forecast,
the RMSE, bias (absolute mean error or AME) and
anomaly correlation (AC) were calculated for geopoten-
tial height, temperature, RH, and vector wind, for differ-
ent forecast times, different levels and different domains.
Some of the ACs are not calculated because in the stand-
ard NCEP Verification Statistics Data Base (VSDB)
package climatologies are only available for certain level
and variable combinations. As a result, there are no RH
ACs and ACs are missing for some levels for the
other variables.

In order to check that the DA system makes similar
use of the real and simulated BT observations, DA diag-
nostic statistics were compared between experiment PM
and a similar OSE assimilating real ATMS observations.
This OSE was run for the period 25 May through 7
August 2014 and statistics were collected for the last two
weeks of this period. For these experiments, Channel 15,
which has the highest noise level of all the channels (see
Table 4) is blacklisted (not used). Figure 8 shows that the
O–A statistics closely follow the O–B statistics which is
expected when the observations are being used consist-
ently. The largest changes from O–B to O–A are seen in
the 183GHz humidity channels (17–22), where the add-
ition of ATMS or EON-MW reduces the bias by about
0.1K for each channel and for each cycle. Biases are
somewhat larger for EON-MW compared to ATMS,
with the largest values being close to 1K. Biases and
standard deviations are all small enough that we can con-
clude that the DA system is fitting the EON-MW simu-
lated observations as closely as the ATMS real
observations. As expected, the variational bias correction
(VarBC) is making larger corrections in the real data case
for ATMS compared to EON-MW OSSE, because

Fig. 8. DA diagnostics for BT globally averaged over two
weeks for (top, a–d) ATMS from an impact experiment using
real observations with the same set up as experiment ATMS but
for 2014 and for (bottom, e–i) EON-MW from the PM
experiment. For each of ATMS and EON-MW, the following
statistics are given as a function of channel: (a, e) global mean of
O–A and O–B (K), (b, f) global standard deviation of O–A and
O–B (K), (c, g) the bias correction (K) relative to the analysis
and background, and (d, i) the number of observations
assimilated (counts/day).
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observations in the OSSE include random errors, but no
explicit biases. The DA system is also using more of the
ATMS observations than for EON-MW. This is expected
as discussed earlier due to the QC procedure based
on cloudiness.

In an OSSE, we can also examine the actual analysis
error—a key impact metric—since the truth is known
from the NR. Accordingly, Fig. 9 shows the vertical pro-
files of the mean (left panels) and standard deviation
(right panels) of the analysis error of geopotential height
(top panels) and relative humidity (bottom panels) for 6
of the experiments.2 Geopotential height bias increases
linearly through the troposphere to a maximum of
approximately 7m, while geopotential height RMSE
reaches as much as 12m in the mid-troposphere. Relative
humidity bias is uniformly less than 3% in the tropo-
sphere, while relative humidity RMSE is typically
between 10 and 15%. Differences between experiments
are very small. Even the differences between Control and
1Polar are small, on order of 1m of geopotential height
or 1% of RH. In the figure the curves for Control and the
experiments that add one or two sensors to Control are
packed very close together. Errors are larger for 1Polar
and PM, an experiment that adds an EON-MW sensor
to 1Polar, and the differences between 1Polar and PM
RMSE for relative humidity show a small (order of 1%)
but consistent improvement for most of the troposphere
(800 to 200 hPa) due to adding the EON-MW sensor.

Figure 10 shows one of the many possible scorecards that
were made comparing pairs of experiments. This scorecard
compares AM to Control for forecast days 1, 3, 5, and 6 (or
forecast hours 24, 72, 120, and 144). The metrics include AC
and RMSE for different variables—geopotential height, vec-
tor wind, and temperature—at different vertical levels, over
different regions—North America, Northern Hemisphere
extratropics (NHX), Southern Hemisphere extratropics
(SHX), and Tropics. Colors and shapes reflect the improve-
ment or degradation of the impact as explained in the
legend. Most of the changes are small, but there are signifi-
cant improvements for AM for height forecasts in the strato-
sphere. Note that these stratospheric levels are not included
in the figures that follow.

Figures 11 and 12 display summary assessment metrics
(SAMs, Hoffman et al., 2017a, 2018) for the eight experi-
ments globally and for various categories. Under the null
hypothesis that there is no difference between the experi-
ments each SAM would have an expected value of 1/2,
which is the base of the color bars, and 95% of the SAMs
would be within the grey shading around 1/2. These SAMs
are calculated for the categories given along the x-axes in
Figs. 11b and 12, i.e. for eight forecast times (from 0 to
7days), for five levels (250, 500, 700, 850, 1000hPa), for
three domains (NHX, SHX, Tropics), for four variables (Z,

T, V, RH), and for three statistics (AC, RMSE, AME). The
SAMs are averages over the 32 forecast verification times
(0000 UTC 15 August to 15 September 2006) as well as over
all categories except the category along the x-axis.
Correlations are accounted for along each dimension (i.e.
between forecast times, levels, domains, variables and statis-
tics) in assessing confidence intervals using the method of
Hoffman et al. (2018). To avoid the limitation of the rela-
tively small sample size of the current experiments, for the
SAMs presented here, we use the factors to reduce the sam-
ple size to an effective sample size that were calculated by
Hoffman et al. for three years of forecasts from three oper-
ational global NWP centers.

Figure 11a presents the global SAMs, which average
over all NAMs listed in the previous paragraph. The
experiments based on Control are significantly better than
those based on 1Polar, but more detailed comparisons
are not statistically significant. Compared to Control add-
ing more data is more notably helpful for SSMIS, 2AM,
and 2Tropics than for AM. There is some improvement
for AM, but in this configuration replacing SSMIS
requires more than a single EON-MW. Compared to
1Polar adding more data is more helpful for PM than for
ATMS. There is also improvement for ATMS, but a sin-
gle EON-MW more than replaces a single ATMS in this
very observation poor scenario. Note that AM vs.
SSMIS and PM vs. ATMS are direct head-to-head com-
parison where the only difference is that SSMIS or
ATMS is replaced by EON-MW.

Figure 11b presents the same plot as Fig. 11a but separ-
ately for each forecast time from 0 to 168h. The decay of
impact with forecast time has been seen in all previous
OSEs/OSSEs that we have examined with SAMs and is
caused by the mixing of model errors with initial errors. At
time zero, the analysis SAMs show the full impact of the dif-
ferent observing systems. As the forecast proceeds, model
errors, which have the same causes for all experiments being
compared, grow and dominate the total errors and the dif-
ferences between experiments decreases. Note that the ana-
lysis SAMs (at 0h forecast time) show nearly significant
improvement for SSMIS and 2Tropics compared to Control
and for ATMS and PM compared to 1Polar. AM and 2AM
show small analysis improvements compared to Control. All
these improvements decay with forecast time.

Figure 12 presents SAMs for each level, domain, variable
and statistic for both the analysis alone (color bars) and
averages over the forecast times from 24 to 168h (black out-
lines). (In Fig. 11, the black outlines and color bars are iden-
tical, but since the analysis impact was shown in Fig. 11b to
be the most important, in Fig. 12 color bars are plotted for
the analysis SAMs and black outlines for the forecast
SAMs.) In Fig. 12a it is striking that AM is best at 250hPa
during the forecasts, but at lower levels and at all levels at
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the analysis time SSMIS and 2Tropics are better. ATMS has
a somewhat negative impact at the lowest levels. In Fig. 12b,
2AM is slightly better in the extratropical forecasts, where it
provides more observations than any other experiment, but
worse than AM for the tropical analysis, where SSMIS and
2Tropics are both good. By variable, in Fig. 12c, although
SSMIS and 2Tropics provide the best analysis, the results

for Z and T are somewhat confused, with Control besting
2AM for the Z analysis. For V and RH, additional data,
helps all the analyses and forecasts. For RH, 2Tropics and
2AM are better than SSMIS, and PM is better than 1Polar
for both analyses and forecasts. Part of this improvement is
likely due to the changes of EON-MW water vapor bands
(Ch-17-22) that are seen in Table 3 and discussed in Section

Fig. 9. Vertical profiles of analysis mean error (i.e. bias, a, c) and analysis RMSE (b, d) for geopotential height (m, a, b) and relative
humidity (%, c, d) for the different OSSEs (colors) for the global domain.
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Fig. 10. Scorecard comparing forecast skill for anomaly correlations and RMSE for different variables at different levels for different
forecast lengths for AM vs. Control. The symbols and colors indicate the probability that AM is better than Control. As shown below
the scorecard, the green symbols (from left to right) indicate that AM is better at the 95%, 99% and 99.9% significance levels,
respectively, while the red symbols indicate that AM is worse at the 99.9%, 99% and 95% significance levels, respectively. Gray indicates
no statistically significant differences and blue indicates that the anomaly correlations in the tropics are not considered.
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2. Finally, in Fig. 12d, 2AM is best in terms of forecast AC,
while for RMSE and AME (forecast bias), SSMIS and then
2Tropics are best.

7. Discussion and concluding remarks

Two types of observing system assessment were carried
out for EON-MW, a 12U CubeSat analog of ATMS.
Since they have different strengths and weaknesses, differ-
ent approaches are used here to assess (1) the geophysical
capability of EON-MW and (2) the forecast and analysis
impact of EON-MW on the GDAS. This two-pronged
assessment gives a more complete picture of the value of
a proposed observing system. This is the case because
current DA systems have some limitations. (More about
this below.) Therefore, the full potential of current and
proposed sensors is not exploited, and may not be
exposed by analysis and forecast impact tests. As DA sys-
tems evolve, they will exploit more and more of the infor-
mation value of the observations. Consequently,
geophysical capability assessments are a valuable adjunct
to assessments based on OSSEs that use a complete, but
current, DA and forecast system.

For EON-MW, the sensor characteristics and geophysical
capabilities assessments are straightforward. EON-MW was
compared to ATMS in terms of instrument specifications,
weighting functions, and retrievals. The complementarity of

different sensor sets to ATMS or EON-MW was also exam-
ined. The results of these sensor specifications and geophys-
ical capability assessments are that EON-MW is close to
equivalent to ATMS. This result was anticipated since the
EON-MW channels and sensor specifications closely follow
those of ATMS. However, there is evidence that EON-MW
has more useful humidity information than ATMS. Thus,
impacts were expected to be seen in the OSSE water vapor
results because of the differences in the water vapor chan-
nels (Table 3) in terms of central frequency, band width,
and the number of pass bands (2 for ATMS and 1 for
EON-MW).

The assessments presented in this paper do not address
the pros and cons comparing a suite of SmallSats to a
single large observatory. For example, a constellation of
MW and IR SmallSats even if flying in close formation
could not attain the degree of image registration provided
by current LEO satellites, potentially leading to changes
in the way the data can be used or loss of accuracy for
some applications. On the other hand, SmallSats are
more economical, have a quicker development cycle and
are easier to launch; therefore SmallSats can provide
more robust solutions for a lower price and allow for
greater risk-taking in testing new measurement concepts
and in advancing cutting edge technologies.

The OSSEs described in Tables 1 and 2 were designed to
evaluate several different EON-MW constellations for gap

Fig. 11. Forecast impacts in terms of (a) global ECDF SAMs and (b) ECDF SAMs as a function of forecast time for each
experiment (colors). The color bars are for ECDF normalization (Hoffman et al., 2018). Confidence intervals for the ECDF SAMs are
plotted at the 95% level and grey shading indicates the 95% confidence interval for the null hypothesis (H0) that there is no difference
between experiments. Correlations have been accounted for in determining the confidence intervals as noted in the text. Note that the
forecast time zero SAM in panel (b) is the analysis SAM since verification is with respect to the G5NR.
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mitigation and/or replacement of ATMS in the context of
global NWP. In the OSSEs, the truth is taken to be the
G5NR. CRTM creates simulated observations from the geo-
physical profiles of temperature and moisture evaluated from
the G5NR. Each experiment was designed to address one of
the questions in Table 1. As in most OSSE studies, clear-cut
unambiguous results are limited by sample size and the cha-
otic nature of the atmospheric dynamics. Here, our results

and conclusions are summarized in the context of these and
other caveats. The summary findings, based principally on
the SAMs, are the following:
1. All experiments show positive impacts when

considering global (overall) SAMs. Adding one or
two MW sensor to Control or one sensor to 1Polar
yields analysis improvements that are nearly
statistically significant in some cases.

Fig. 12. Analysis and forecast impacts in terms of ECDF SAMs by (a) level (hPa), (b) domain, (c) variable, and (d) statistic for each
experiment (colors). The color bars are for the analysis SAMs (forecast hour 0 only) and the black outlines are for the forecast SAMs
(forecast hours 24 through 168). In this figure, confidence intervals are plotted at the 95% level for the forecast SAMs and grey shading
indicates the 95% null hypothesis (H0) confidence interval for the analysis SAMs.
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2. AM (the Control1EON-MW on F18 experiment)
compared to SSMIS (the Control1SSMIS on F18
experiment) shows that a single EON-MW sensor
partially mitigates the loss of the DMSP satellite.
This mitigation is not complete and SSMIS alone
results in somewhat better analyses and forecasts
relative to an EON-MW replacement.

3. 2AM (the Control1EON-MW on F18 and F18’
experiment) is comparable in terms of global skill to
SSMIS, indicating that 2 EON-MW sensors in
staggered early morning orbits, even if only two
hours apart, are capable of replacing the troposphere
and stratosphere temperature and humidity sounding
capabilities of SSMIS. However, the analysis SAMs
for AM and 2AM are comparable.

4. 2Tropics (the Control1EON-MW on TRMM and
TRMM’ experiment) is also very comparable in
terms of global skill to SSMIS and 2AM, but there
is a substantial improvement in analysis skill for
2Tropics and SSMIS compared to Control, AM,
and 2AM.

5. As expected, 1Polar significantly reduced global
analysis and forecast skills compared to Control.

6. PM (the 1Polar1EON-MW on SNPP experiment)
mitigates the loss of the SNPP satellite. In this
scenario, the loss of ATMS is fully compensated by
just a single EON-MW. That is, ATMS (the
1Polar1ATMS on SNPP experiment) compared to
PM shows that EON-MW improves (but not
significantly improves) analysis and forecast skill
compared to ATMS alone in this otherwise data
poor scenario.

The reader should note that these quantitative impacts
depend on the DA system used (here, a low resolution
research version of the operational NCEP system), and
the metrics examined (here, metrics describing the large-
scale global forecast skill).

In the results presented here, differences between the
Control-based scenarios or 1Polar-based scenarios are not
statistically significant at the 95% level (but are nearly so
for some of the analysis SAM comparisons). One reason
is the limited sample size in these experiments. A second
reason is that for the current GOS there are many satel-
lite sensors and eliminating or adding a single sensor or
satellite may not have a large impact on forecast skill. To
partially ameliorate this, the Control experiment excludes
BTs from some polar-orbiting sensors (e.g. AIRS and
AMSU on Aqua, and SSMIS on F18). Aircraft observa-
tions were also excluded for reasons given in Section 6.1.

Two further issues in current DA systems present bar-
riers to the full exploitation of the information value of
observations, and especially for satellite radiance observa-
tions. First, there are representativeness errors. In the DA

context, representativeness error is the variability present
in observations, but not represented by the DA system,
and is considered a component of observation error. This
means that the DA system ignores some information con-
tained in the observations and as DA system resolution
increases, the DA system estimates of the errors of the
satellite BTs will decrease, and more of the information
contained in the BTs will be extracted by the DA system.
Second, dense observing systems like satellite radiances
often have correlated observation errors. These correla-
tions are difficult to estimate and are often ignored in
DA systems. Instead the DA estimate of the error stand-
ard deviations are inflated, or the data are thinned or
replaced with super-observations. However, Bormann
et al. (2010) and Stewart et al. (2014) estimated such
error correlations. Bathmann (2018) investigated the con-
vergence properties of the Desroziers method used for
estimating observation error correlations. Bormann et al.
(2011) argue that simple error inflation is not sufficient to
account for the observed correlations. In any case, incor-
rect specifications of error characteristics reduce DA skill.
The finding that two additional instruments add little to
the analysis benefit obtained from a single additional
instrument (AM vs. 2AM) may be related to these fac-
tors. Therefore additional tuning of the error standard
deviations and data thinning used in the analysis, factors
which shift the weight given to individual data sources
within the analysis, should be the subject of fur-
ther research.

In conclusion, impact assessments, like the ones
described here support decision-making, but do not make
decisions. An impact assessment based on the OSSE
method focuses on the value of specific observing systems
as they relate to specific performance metrics of specific
(necessarily current) mission applications. The outcome
of this type of assessment and its applicability are critic-
ally dependent on precisely how the experiment was
framed. Accordingly, while impact assessments are
important inputs to decision making, results delivered
alone and out of context can lead to poorly informed
decisions. Therefore, there is also a need to assess the
inherent geophysical information value. Since current DA
systems may not take full advantage of the potential of
current and proposed sensors, underutilized sensors may
have a greater value in a future DA system. Thus, geo-
physical capability assessments are needed to evaluate the
potential utility of sensors outside of the context of DA
system, and to point the way for how DA systems might
evolve. Finally, there are also many critical investment/
divestment decision factors, such as real cost, opportunity
costs, partnership implications, exploitability and sustain-
ability, that are not addressed by assessment experiments.
In the case of EON-MW, the latest decision is that
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NOAA is funding the formulation phase of EON-MW.
The nominal launch date is 2021.

Notes

1. All acronyms are defined in the Appendix.
2. The 6 are the baseline experiments and the

experiments adding EON-MW sensors.
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A. Acronyms

Acronyms used in the text are listed here. Common
acronyms (e.g. UTC and RMSE) and proper names (e.g.
names of specific institutions and systems such as NASA
and MicroMAS) are not expanded in the text when
first used.

3DEnVar 3D-ensemble variational
4DEnVar 4D-ensemble variational
AC anomaly correlation
AIRS Atmospheric Infrared Sounder
AME absolute mean error
AMSU Advanced Microwave Sounding Unit
AMV atmospheric motion vector

AOML Atlantic Oceanographic and
Meteorological Laboratory (Miami FL)

ATMS Advanced Technology
Microwave Sounder

BT brightness temperature
CGOP Community Global OSSE Package
CICS Cooperative Institute for Climate Studies

(College Park, Maryland)
CIMAS Cooperative Institute for Marine and

Atmospheric Studies (Miami, Florida)
CIMSS Cooperative Institute for Meteorological

Satellite Studies (Madison WI)
CISESS Cooperative Institute for Satellite Earth

System Studies (College Park, Maryland)
CLW cloud liquid water
CrIS Cross-track Infrared Sounder
CRTM Community Radiative Transfer Model
CubeSat Cube Satellite
DA data assimilation
DMSP Defense Meteorological Satellite Program
DNN deep(-layer) neural network
ECDF empirical cumulative density function
EOE estimated observation errors
EON-MW Earth Observing Nanosatellite–Microwave
ESSIC Earth System Science Interdisciplinary

Center (University of Maryland,
College Park)

G5NR GEOS-5 nature run [GMAO 7-km
(1=16� 1=16

�
) resolution NR]

GDAS global DA system
GEO geosynchronous equatorial orbit
GEOS-5 Goddard Earth Observing System Model,

version 5 (NASA)
GFS Global Forecast System (NOAA/NWS)
GHz giga Hertz
GIFOV ground instantaneous field of view
GMAO Global Modeling and Assimilation Office
GOES Geostationary Operational

Environmental Satellite
GOS global observing system
GPSRO global positioning system radio

occultation
GSI Gridpoint Statistical Interpolation
GSM global spectral model
HIRS High Resolution Infrared

Radiation Sounder
IASI Infrared Atmospheric Sounding

Interferometer
IMSG I. M. System Group, Inc.
IR infrared
ITCZ Intertropical Convergence Zone
JPSS Joint Polar Satellite System
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L0, L1, L2 Level 0, 1, 2 Data
LEO low Earth orbit
LL Lincoln Laboratory (Lexington, MA)
Meteosat Meteorological Satellite (in

GEO, European)
MetOp Meteorological Operational Satellite

Programme (European)
MHS Microwave Humidity Sounder
MicroMAS Micro-sized Microwave

Atmospheric Satellite
MiRaTA Microwave Radiometer Technology

Acceleration
MiRS Microwave Integrated Retrieval System
MIT Massachusetts Institute of Technology
MW microwave
NAM normalized assessment metric
NASA National Aeronautics and Space

Administration
NCEP National Centers for Environmental

Prediction (NOAA/NWS)
NEDT noise equivalent temperature difference
NESDIS National Environmental Satellite, Data,

and Information Service
NHX Northern Hemisphere extratropics
NOAA National Oceanic and Atmospheric

Administration
NR nature run
NUCAPS NOAA Unique Combined Atmospheric

Processing System
NWP numerical weather prediction
NWS National Weather Service (NOAA)
OPPA Office of Projects, Planning, and Analysis
OSE observing system experiment
OSSE observing system simulation experiment
PAM primary assessment metric
QC quality control
QH quasi-horizontal
QV quasi-vertical
RH relative humidity
RMSE root mean square error
RTi Riverside Technology Inc.
SAM summary assessment metric
SEVIRI Spinning Enhanced Visible and

Infrared Imager
SHX Southern Hemisphere extratropics
SmallSat Small Satellite
SNDR Sounder
SNPP Suomi National Polar-orbiting

Partnership
SSEC Space Science and Engineering Center

(Madison, WI)
SSMIS Special Sensor Microwave

Imager Sounder

STAR (Center for) Satellite Applications
and Research

TMI TRMM Microwave Imager
TRMM Tropical Rainfall Measuring Mission
TROPICS Time-Resolved Observations of

Precipitation structure and storm Intensity
with a Constellation of Smallsats

UTC Universal Time Coordinated
VarBC variational bias correction
VIIRS Visible Infrared Imaging Radiometer Suite
VSDB Verification Statistics Data Base
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